skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ackerson, Michael R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Charlier, B (Ed.)
    Quantifying the oxygen fugacity (fo2) of high temperature lithospheric fluids, including hydrothermal systems, presents a challenge because these fluids are difficult to capture and measure in the same manner as quenched glasses of silicate melts. The chemical properties of fluids can however be inferred through mineral proxies that interacted with the fluids through precipitation or recrystallization. Here, we present hydrothermal experiments to quantify the partition coefficients of rare earth elements (REEs) – including redox-sensitive Ce and Eu – between zircon and fluid. Experiments were conducted in a piston cylinder device at temperatures that range from 1200 to 800 ◦C under fo2-buffered conditions in a SiO2-ZrO2-NaCl-REE-oxide system, and similar experiments were performed in the absence of NaCl (31 total experiments). The fo2 was buffered to values that range from approximately 3 log units below to 7 log units above the fayalite magnetite quartz equilibrium. Zircon REE concentrations were quantified using laser ablation inductively coupled plasma mass spectrometry whereas the quenched fluids were extracted and measured by solution-based inductively coupled plasma mass spectrometry. Zircon Ce anomalies, quantified relative to La and Pr, exhibit sensitivity to oxygen fugacity and temperature and our preferred calibration is: log [􀀀 Ce Ce* ) D 􀀀 1 ] = (0.237 ± 0.040)× log(fo2) + 9437±640 T(K) 􀀀 5.02 ± 0.38 where the Ce anomalies are calculated from the partition coefficients for La, Ce, and Pr. Zircon Eu anomalies are also a function of oxygen fugacity though they exhibit no systematic dependence on T. Our preferred calibration is described by: 􀀀 Eu Eu* ) D = 1 1+100.30±0.04􀀀 [0.27±0.03]×ΔFMQ We performed additional calculations, in which lattice strain parabolas were fit to all non-redox sensitive rare earth elements that were added to the starting composition (i.e., La, Pr, Sm, Gd, Dy, Ho, Tm, Lu) as an alternate means to calculate anomalies. This method yields broadly similar results, though we prefer the La-Pr calibrations due to the non-systematic REE patterns frequently encountered with hydrothermal zircons; e.g., LREE zircon enrichment relative to other REEs. These experiments are applied to quantify the fo2 of fluids during mineralization of critical element-bearing systems, and separately to calculate the oxygen fugacity values of fluids formed during plate boundary processes. 
    more » « less
  2. null (Ed.)
    Suprasubduction zone (SSZ) ophiolites of the northern Appalachians (eastern North America) have provided key constraints on the fundamental tectonic processes responsible for the evolution of the Appalachian orogen. The central and southern Appalachians, which extend from southern New York to Alabama (USA), also contain numerous ultra- mafic-mafic bodies that have been interpreted as ophiolite fragments; however, this interpretation is a matter of debate, with the origin(s) of such occurrences also attributed to layered intrusions. These disparate proposed origins, alongside the range of possible magmatic affinities, have varied potential implications for the magmatic and tectonic evolution of the central and southern Appalachian orogen and its relationship with the northern Appalachian orogen. We present the results of field observations, petrography, bulk-rock geochemistry, and spinel mineral chemistry for ultramafic portions of the Baltimore Mafic Complex, which refers to a series of ultramafic-mafic bodies that are discontinuously exposed in Maryland and southern Pennsylvania (USA). Our data indicate that the Baltimore Mafic Complex comprises SSZ ophiolite fragments. The Soldiers Delight Ultramafite displays geochemical characteristics—including highly depleted bulk-rock trace element patterns and high Cr# of spinel—characteristic of subduction-related mantle peridotites and serpentinites. The Hollofield Ultramafite likely represents the “layered ultramafics” that form the Moho. Interpretation of the Baltimore Mafic Complex as an Iapetus Ocean–derived SSZ ophiolite in the central Appalachian orogen raises the possibility that a broadly coeval suite of ophiolites is preserved along thousands of kilometers of orogenic strike. 
    more » « less